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ABSTRACT: The legacy of Joseph Fourier in science is vast, especially thanks to the essential tool that the 

Fourier transform is. The flexibility of this analysis, its computational efficiency and the physical interpretation 

it offers makes it a cornerstone in many scientific domains. With the explosion of digital data, both in quantity 

and diversity, the generalization of the tools based on Fourier transform is mandatory. In data science, new 

problems arose for the processing of irregular data such as social networks, biological networks or other data on 

networks. Graph signal processing is a promising approach to deal with those. The present text is an overview of 

the state of the art in graph signal processing, focusing on how to define a Fourier transform for data on graphs, 

how to interpret it and how to use it to process such data. It closes showing some examples of use. Along the 

way, the review reveals how Fourier’s work remains modern and universal, and how his concepts, coming from 

physics and blended with mathematics, computer science, and signal processing, play a key role in answering 

the modern challenges in data science. 
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I. INTRODUCTION 
Dealing with data and observations has always been an important aspect of discovery in science. The 

idea that science is related to data was brilliantly summarised by Fourier in his own work in physics and 

mathematics [1]
1
: “Les causes primordiales ne nous sont point connues ; mais elles sont assujetties à des lois 

simples et constantes, que l’on peut dé-couvrir par l’observation, et dont l’étude est l’objet de la philosophie 

naturelle.” We argue that the same approach, mixing observations, modelling and analysis, infuses data science. 

Revisiting J. Tukey’s vivid text from 1962 [2] about “The Future of Data Analysis”, D. Donoho in [3] posits 

that “data science is the science of learning from data”. One can add that data science can also rely on key 

concepts coming from physics, especially Fourier analysis, to better unveil information (e.g., in terms of 

frequencies) and transform or process the data. 

Up to recent time, data processing was dealing with standard or regular domains: time series, images in 

2-d space, videos in 2 d plus time. Now data reside more and more in irregular domains, and an important case 

is that of data indexed on networks (themselves coded as graphs), as it allows us to encompass both relational 

aspects and attributes of a given data set. The purpose of this review article is to shed light on the current 

challenges raised by the processing of such data on graphs. Then, it shows how this emerging domain, also 

called graph signal processing, by extension of classical signals, prompted the derivation of adapted and efficient 

tools inspired by the generalization of Fourier analysis. 

 

1.1. What is so special about graphs? 

Graphs are sets of vertices and edges. By connecting the vertices together, edges are giving a structure 

to the graph. These links and their weights represent the similarity, affinity or distance between vertices. From 

this notion of distance, the graph can be seen as a discrete space. A graph can represent the discretization of a 

regular domain. Examples include Euclidean spaces such as the regular grid in 2 d or the path graph in 1 d, or 

manifolds, like the discrete sphere or a torus. However, a graph can correspond to a more general structure such 
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as a non-Euclidean and highly irregular space. A first step out of regular domains is made by the irregular 

sampling of a manifold and leads to a nearest neighbour graph where edges have different weights. Progressing 

further in the graph landscape, some graphs may have highly connected vertices such as influencers in a social 

network, which have no clear equivalent in a manifold structure. The number of neighbours may vary from 

vertex to vertex, yielding a local topology that changes with the localization on the graph. A graph may also be 

highly connected and while having a large number of vertices, it can have a small diameter.
2
 In that case, any 

vertex may be reached within a few hops, and every vertex is a (more or less close) neighbour of every other 

ones. Last example, graphs may consist of several clusters of highly connected nodes, while clusters are weakly 

connected together. This makes graphs particularly exotic and fascinating structures that have been extensively 

studied in data analysis for the past 20 years [4–6]. 

Now, in order to generalize signal processing to graphs, the first requirement is to generalize the 

Fourier transform to this domain, as it is the central tool of signal processing. That is precisely what has been 

done in a series of independent pioneering works [7–12], where all the authors addressed this issue of data 

processing on graphs. Although these semi-nal works tackled the problem from different angles that led to 

distinct algebraic theories with their own properties and limitations, they all together paved the way to the Graph 

Signal Processing (GSP) era, and made possible to coherently decompose, process and analyze a collection of 

arbitrarily structured data points. Interestingly, at the same time and quite independently, related outcomes 

flourished under the umbrella of the communities of network science and graph-based machine learning, 

drawing clear bonds with GSP. When one wants to study a signal on this space, unconventional effects appear 

that we will describe in the following. For example, a Fourier mode is not always uniformly oscillating on a 

graph. It may even be localized at some place inside the graph. The uncertainty principle may be much weaker, 

allowing functions to be localized both on the graph and in the frequency domain. We will also see that some 

phenomena remain intuitive, such as the heat diffusion that spreads along the edges of the graph, or the notion of 

smoothness for a function. Analyzing data on a graph brings many surprises, and forces us to abandon some 

concepts that used to be taken for granted. It revisits old principles, making them shine in a different manner. 

 

1.2. Objective and organization 

We will start reviewing the basic ingredients and important aspects of graph signal processing, 

highlighting the intuitions behind. We will see how and why the Fourier transform, with its concepts of 

frequency and harmonic analysis, extends to the graph domain. This will also cover filtering, vertex-frequency 

or wavelet transforms, and other classical signal processing operations that are thus adapted to data indexed on 

graphs. We will strive to delve into the analogy, to illustrate the theory of GSP, as well as to give an overview of 

the possibilities it brings in data science. This article does not obliterate the recent review about GSP [13], or the 

existing collective books on GSP [14–16], which are insightful on the current state of the art of GSP. Our 

objective is complementary: in addition to cover the basics and some examples, we hope to exhibit the legacy of 

Fourier’s work in the development of GSP, and in data science at large. 

Section 2 presents the general way to define a graph Fourier transform, and how to interpret Fourier 

modes on graphs and associate a frequency. We then review in Section 3 basic operations of graph signal 

processing such as filtering, denois-ing, translating or sampling. Alternate spaces of representation are described 

in Section 4. Finally, Section 5 develops some considerations about the place of GSP (and of the concept of 

graph Fourier transform) within the domain of Data Science for graph-based data. Section 6 concludes. 

 

II. GRAPH FOURIER ANALYSIS: FREQUENCIES AND MODES 
Working on heat diffusion, Fourier introduced the eponymous mathematical decomposition, in order to 

solve specific differential equations, writing p. xii of [1]
3
: “Les équations du mouvement de la chaleur, comme 

celles qui expriment les vibrations des corps sonores, ou les dernières oscillations des liquides, appartiennent à 

une des branches de la science du calcul les plus récemment découvertes, et qu’il importait de perfectionner. 

Après avoir établi ces équations différentielles, il fallait en obtenir les intégrales [...].” The legacy of Fourier 

through his Fourier transform is precisely this: how to deal with and how to solve dynamical systems. As 

discussed in the Introduction of [17], the now central place of Fourier analysis for data analysis comes from i) 

its mathematical soundness to address a large class of linear operators, ii) its physical relevance for 

decomposing a signal into waves related to physically relevant frequencies, and iii) the existence of remarkably 

efficient algorithms (Fast Fourier transform) to compute it numerically on regular discrete domains. Realizing 

recently that data indexed on irregular domains – such as graphs or manifolds – can be studied through a 

generalization of Fourier analysis led to the emergence of graph signal processing [7]. 

 

2.1. Graph Fourier modes and transform 

The Fourier transform (FT) is classically a transformation to represent a signal or a function in a 

frequency domain. From Fourier’s perspective, the purpose of introducing this transformation was to solve the 
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heat equation. The FT was then introduced as the decomposition onto the eigenmodes of a basic linear operator 

that describes physical phenomena (heat diffusion, and also other types of diffusive transports, wave 

propagations, oscillations) on the domain. Fourier was expressing diffusion via the Laplace operator , related to 

the second order derivative (more exactly the divergence of the gradient) of a function. For a one-dimensional 

(1-d) function (or signal) of the time t, the usual Fourier modes describe oscillations 
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For finite discrete domains (such as that of time series, images...), the same approach leads to discrete 

versions of FT: the discrete Fourier transform (DFT) for the discrete 1-d line with periodic boundary conditions, 

or the DCT-II [18] for the discrete 1-d line with Neumann boundary conditions (cancelling the derivative at the 

boundaries). To connect these Fourier transforms to the case of graphs, it suffices to remark that in both discrete 

cases, the domain is in fact a graph (a chain or a cycle in 1 d, a grid or a torus in 2 d) and that, under adequate 

normalisation, the Laplacian L plays the role of − . Then, discrete transforms naturally stem from diagonalizing 

L. For a(n) (undirected) graph G = (V , E) where V is the set of N nodes and E the set of edges, the 

(combinatorial) Laplacian is defined as L = D − A, where A is the adjacency matrix ( Ai j = 0 if nodes i and j are 

not connected, and takes positive values whenever (i, j) ∈ E; this value is the weight on the 

edge, which reduces to 1 for unweighted graphs) and D is the diagonal matrix of degrees (D ii = di = j Ai j , also 

called strength for weighted graphs). The idea of graph signal processing [7] is to generalize the notions of 

oscillation, frequency and FT to any graph, even if irregular, using the spectral domain of the linear operator L 

[19]. 

The notion of regular oscillations on an irregular domain such as a graph can seem paradoxical. To 

circumvent this difficulty, the generalization is framed in terms of smoothness and low variations of the modes, 

and superseding the notion of frequency in that way takes us back to the Laplacian. When it comes to study a 

function, one key element is to analyse its variations, as measured by the gradient operator ∇ . On a graph, it can 

be defined as follows. Let f be a graph signal, that is, a function defined on the vertices of a graph G. The 

gradient of this function between two connected vertices i and j is defined as: 

 

∇ f (i, j) = A
i j ( f ( j) − f (i)) (1) 

This gradient maps the vertex domain V to the edge domain E. It is connected to the Laplacian operator, whose 

expression can be rewritten for undirected graphs as: 

 

. 

(2) L=D−A=∇ ∇ 

This expression
4
 highlights how L conveys information about the variations of a function. In fact, for undirected 

graphs, as L is symmetric, it is more convenient to study than the ∇ : L is a diagonalizable operator with real and 

non-negative eigenvalues and its eigenmodes form a set of orthonormal vectors [19]. 

 

Henceforth, any graph signal, i.e. a function f defined on the vertices V of the graph G, can be projected on the 

eigenvectors of the Laplacian. Let λk and uk be respectively the k-th eigenvalue and eigenvector of the Laplacian 

L (with the eigenvalues ordered increasingly). By analogy, the uk ’s are called “graph Fourier modes”. This set 

of modes is an orthogonal 

basis for the Hilbert space of the graph 

signals f ∈ R 

N f 

of 

f 

at 

λ 

 

. Therefore, we call a “Graph Fourier transform” 

(GFT) 
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Since the {uk}k=0,...,N−1 form an orthogonal basis, an inverse Fourier transform exists and reads: 

f (i) 

= 

N−1
 f (λ )u (i)  

 ˆ k   k  (4) 
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k=0 

 

This direct–inverse GFT pair constitutes the starting point of Fourier analysis: a convenient decomposition of 

signals, which can help to solve equations with linear operators on graphs in the dual spectral domain. 

 

As an example, let us go back to the diffusion equation, which can be expressed as follows on a graph [6]: 

 

∂ f 

= −L f with the initial condition f (i, t = 0) = f0(i) (5) ∂t 

 

 

The solution to this equation is directly obtained in the Fourier domain, since applying the GFT of Eq. (3) to 

both terms 
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equivalently be written as f (i, t) = e
−t L

 f0(i). Fig. 1 illustrates this diffusion on different graphs. As time 

increases, not only the diffusion process spreads the signal over the graph, but also it attenuates more rapidly the 

components corresponding to larger eigenvalues. To understand this and to explain diffusion as a smoothing 

operation, modes need to be interpreted in terms of frequencies and oscillations or more generally in term of 

variation rate. 

 

2.2. Frequencies and oscillations on graphs 

Classically, the notion of frequency is so deeply rooted in the physical interpretation of the Fourier 

transformation that FT is often introduced as a tool for measuring oscillations. As for graphs, such notion is not 

intrinsic and it is critical to relate graph Fourier modes to a concept of oscillation, if not of frequency. The 

previously introduced Laplace operator turns out again to be central as a measure of the smoothness of a graph 

signal f . Indeed, the following scalar product (also called Dirichlet energy) 
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Fig. 1. Illustration of the heat diffusion over a 2-d manifold (top), and over a graph with communities (bottom), 

at different time τ . In both graphs, the heat spreads from node to node, following the edges. Top: the initial hot 

spot is a node located on the ear of the bunny. The Bunny graph is a discretization of a 2-d surface, with nodes 
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connected to their nearest neighbours in 3 d. Bottom: The diffusion starts inside a community and quickly 

spreads within it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Some graph Fourier modes on a random sensor graph. From left to right: first non-constant eigenvector 

(Fiedler vector) u1 , second and third eigenvectors (u2 and u3 ). Colourmap: positive values in yellow, negative 

ones in blue. 

 

computes the sum of the variations of a graph signal f , where Ai j is the weight of the link (i, j). Hence, for each 

graph Fourier mode uk , the (non-negative) eigenvalue λk quantifies its variation and smoothness, because: (uk , 

Luk)/(uk , uk) = λk . This motivates us to identify this value with the mode frequency, opening the door to 

harmonic analysis on graphs: the larger λk is, the less smooth the mode is and the faster it oscillates. 

This argumentation does not necessarily imply that modes are pure oscillations. For regular domains 

(e.g., 1-d discrete line or ring, or 2-d grids or torus), the notion of oscillation is well defined and corresponds to 

cosine and sine functions. In the case of graphs, the domain can be so irregular that the intuitive idea of an 

oscillation may simply not hold. Let us discuss the graph Fourier modes in order of increasing eigenvalue. 

– No oscillation: classically, the zero frequency means no oscillation and this is the case for graphs. There is 

always a null eigenvalue for L. Its multiplicity is equal to the number of connected components of G, and the 

associated eigenvectors are constant on each connected component. Each connected component can be treated 

separately, and in the following, we assume that there is only one component. Then, u0 is the only constant 

mode in the GFT, with eigenvalue (i.e. frequency) λ0 = 0, as in the DFT case. 

– One oscillation over the whole graph (see Fig. 2): as all other eigenmodes have to be orthogonal to u0 , they 

must, at least, behave as a crude oscillation in one way: their values are positive on some nodes and negative on 

others. This is the case for the next smoothest possible Fourier mode, with the smallest non-zero possible 

frequency (eigenvalue). Also named the Fiedler vector, this component verifies an insightful property: as it must 

change sign and because this is costly in term of variations, it switches where the graph is the less connected. It 

turns out that, on a graph made of two weakly connected communities, the Fiedler vector will have a different 

sign on each of the communities. It is precisely this property that led to the celebrated spectral clustering method 

in machine learning [23]. 

– Several oscillations: one can build orthogonal oscillations on the graph with increasing frequencies by 

considering the successive eigenvectors that satisfy the minimax principle, 

 

uk = Argmin 

(v, L v) 

(7) 

   

v 

2 

 

v∈/  k−1    

 

where k−1 is the subspace spanned by the first k − 1 eigenvectors. These constraints of smoothness and 

orthogonality lead to cosine and sine functions in the standard domain. On the graph domain, there is no analytic 

formulas for the eigenvectors, and in practice they may have complex shapes. Still, they fulfil the constraints: 

they alternate sign more often than the modes with smaller frequency (eigenvalue), while varying as smoothly as 

possible from vertex to vertex. 
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This supports the interpretation of a mode’s eigenvalue as its frequency. Returning to the GFT formula, 

Eq. (3) means that any graph signal can be decomposed into a sum of graph Fourier modes, each of them being 

associated with a frequency that measures how fast it oscillates. This lays the foundations of harmonic analysis 

on graphs, where Eq. (6) properly defines the frequency of a Fourier mode, the graph Fourier modes are the 

eigenmodes of the Laplacian – a physically relevant linear operator – and analytically, there exists a direct 

decomposition (3), with an exact reconstruction formula (4). 

 

2.3. Uncertainty principle, localization, and sparsity 

On a regular domain, homogeneous and isotropic, the heat diffusion process does not depend on the 

localization or direction within the domain. This is reflected by the shape of the Laplacian eigenvectors. They 

are evenly spread over the domain. The meaning of “spreading” here is related to the fact that modes have non-

zero values everywhere on the domain (except on some isolated points). Intuitively, this spreading can be 

measured using the L
2
 -norm f 2 of f on compact subdomains and by comparing them. If the norms remain close 

for all subdomains of fixed size, the function is well spread. The entropy H of a function is another way to 

measure spreading. For a function f on a discrete, finite domain of N samples, the entropy is a non-negative real 

value given by: 
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Alternatively, one can use the L
1
-

norm, · 
1, which is connected to the notion of sparsity, with sp( f ) =   f  1/  

f  2. A large 

sp value indicates a large spreading 

of f 

over the domain [24,25]. The sparsity measures the concentration 

of a function 

 

on the domain or equivalently, its lack of spreading: it describes how localized a function is on part(s) 

of the domain, with zero values outside. 

This spreading property of Fourier modes has been extensively studied and it is the core of the 

uncertainty principle. It states that the concentration (or sparsity) of a signal and the concentration of its Fourier 

transform are related and cannot be both small at the same time. Different versions of the uncertainty principle 

have been established for different spreading 

measures [25]. For instance, the entropy of a 

function f 

f 

and its Fourier transform 
ˆ
  (in the regular 

discrete 1D domain) are 

related through:    

H( f ) f ) 

≥ log 

N 

(8)  + H(
ˆ 

 

 

From this relationship, it follows that, if f is made of a single non-zero value, i.e. H( f ) = 0, then its 

Fourier transform has to be broader than a single peak in the frequency domain. 

On irregular domains such as graphs, as seen in Sec. 2.2, homogeneity is lost and the Fourier modes 

have different behaviours at different locations in the graph. To understand what happens to spreading and to the 

uncertainty principle, let us take an extreme case. Let G be a graph made of two disconnected subgraphs G1 and 

G2, where G1 is a single vertex. The two subgraphs form two independent spaces and the set of Fourier modes of 

G is the union of the Fourier modes of these two subgraphs. On this single vertex graph G1 , the signal is 

reduced to a single value and the Fourier basis is only one eigenvector. Therefore, a signal concentrated on G1 , 

with zeros on G2 , is orthogonal to any Fourier mode of G2 and will have a single non-zero value in the 

frequency domain, associated with the single mode of G1 . Considering the two subgraphs separately, the 

uncertainty principle of Eq. (8) is valid on the subgraph G1 , as N = 1. However, considering G, Eq. (8) does not 

hold anymore. Similarly, the Fourier modes have at least two different behaviours and localisations depending 

on their associated space (from G1 or G2). For this union of graphs, the lower bound of the uncertainty principle 

is given by the graph G1, a particular region of G. This is also shown by the generalization of Eq. (8) (see 

[25,26]): 

H( f 

) + H( 
ˆ 

≥ − 

2 log 

μ  μ = i, j j  (9) 

  f )   ,   (δ , u )  
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The quantity μ is the mutual coherence of the canonical basis {δi }i on the graph and the graph Fourier 

basis {u j } j , with (·, ·) being the scalar product. In our extreme case, μ = 1, given by the scalar product of δi 

localized on G 1 and the eigenvector of the graph Laplacian of G1 . Note that in the case of a ring graph, which is 

the standard discrete setting, we recover Eq. (8). 

Hence, with this basic example we see that the uncertainty principle depends on the local structure of 

the graph and its inhomogeneity. Furthermore, adding a small number of connections between G1 and G2 can be 

seen as a small perturbation of the graph Laplacian of G and hence of its eigenvectors. As a result, the spreading 

of the eigenvectors will not increase much when connecting the two subgraphs. 

To go beyond this global uncertainty principle, one needs to introduce uncertainty principles taking 

into account the local structure of a graph. Then, it becomes possible to obtain tighter bounds that depend on the 

localisation on the graph, and on the structure of the neighbourhood. This is the work proposed in [27]. 

 

2.4. Generalizations: operators on graphs 

The proposed analogy to derive the GFT can be modified if one focuses on a specific operator on the 

graph instead of relying on the Laplacian (and physically on the way a signal diffuses as heat would do). 

For instance, graph Fourier modes were introduced in [12] as the generalized eigenvectors of the 

adjacency matrix A, using its decomposition in Jordan form ( A may not be diagonalizable in the general case of 

directed graphs). The emphasis is put on the shift invariance property of the Fourier modes. The core of the 

analogy comes from the direct 1-d ring graph. Let us write Ad its adjacency matrix, which happens to 

correspond exactly to the translation of f along the direction of the network: (∀i ∈ V ) f (i + 1) = ( Ad f )(i). In 

this case, the derivative is also ∇d = A d − Id, so the gradient and the adjacency matrix share the same set of 

generalized eigenvectors. Moreover, in the directed ring case, Ad is not symmetric but it is normal, i.e. Ad Ad = 

Ad Ad , so that it is diagonalizable and the set of eigenvectors are the DFT modes [13]. It is also the case of the 

gradient and, as a consequence, of L = ∇d ∇d . Now this framework can be used for the undirected ring graph 

with adjacency matrix Au = Ad + Ad ; then, one has L = 2Id − Au and L and Au possess the same eigenvectors. 

Note also that, up to a constant, the Laplacians of the directed and undirected rings are equal. Keeping the 

viewpoint of physics, the formula L = ∇ ∇ makes the two approaches (through L and through A) very similar. 

On an undirected ring graph, 

A u = (∇d + Id) + (∇d  + Id), it commutes with L, and the eigenvectors for Au  and L are the same. 

The analogy of [12] is relevant as it emphasises the role of a possible shift operator, here A on the 

graph as it generalizes the usual discrete signal processing. A general approach would be to consider other 

choices of shift operators and suitable measures of variation or smoothness to define variations. For instance, 

Sections II of [28] or [29] describe the different pos-sible choices of shift operators and their associated measure 

of variation, and hence of frequency. A variant is to normalise 

 

L into the so-called normalised Laplacian: Ln = D
−1/2

 L D
−1/2

, well known for instance for graph spectral 

clustering [23]. In the case of directed graphs, [21] advocates why one could use the random walk operator as 

the shift operator, and the directed Laplacian as proposed in [20] to measure variations. Other recent works 

[30,31] deal with the directed case by considering more elaborate measures of variations and building the 

graph Fourier modes accordingly. 

 

Nonetheless, as the connection with physical process (e.g., the heat equation) is not straightforward in 

all these works, from now on, we will restrict our discussion to harmonic analysis defined on the Laplacian of 

undirected graphs, a choice that is closer to the initial work and motivation of Fourier. 

 

III. GRAPH SIGNAL PROCESSING 
With graph Fourier transform and harmonic (or frequency) analysis thus defined, we have all 

appropriate building blocks to develop a theory of signal processing on graphs. In this section, we discuss some 

central tools in signal processing and how they are adapted to graph signals. 

 

3.1. Graph filters 

The first operation that finds a simple equivalence for graph signals is filtering. That is, the extraction 

of a part of a signal that corresponds to a subset of frequencies for ideal filters, or more generally the weighting 

of the Fourier coefficients f (λk) obtained with the GFT of Eq. (3). As advocated in Section 2.2, the frequency of 

the graph Fourier modes is associated with its eigenvalue as an eigenmode of the Laplacian. It follows that a 

linear filter H can be designed by specifying a filtering function h that weights independently the Fourier 

coefficients; the resulting filtering of a function f reads: 
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H( 

f 

) 

(i) N−1 f (λ )u (i) 

(10)   = h(λk) 
ˆ 

k   k  

k=0 

 

An example of low-pass filtering is shown in Fig. 3 (i). The solution to the diffusion equation (5) would be 

another instance of low-pass filtering with the kernel function h(λk ) = e
−tλ

k , with parameter t ∈ R
+
 controlling 

the cut-off frequency. 

Some points deserve attention. The graph spectral domain is a discrete and finite set spanned by the 

(non-negative) eigenvalues of the graph Laplacian. It is an irregularly sampled half-line that contrasts with the 

regularly spaced frequencies of the DFT. Hence, there are several manners to define a graph filter: 

 

i) define h(λ) over the non-negative real line. This allows us to define filters that can be applied to graphs of 

different shapes and sizes (and therefore different eigenvalues). Optionally, the function can be a function 

of λ/λmax where λmax 

 

  

    

    

    

    

 

Fig. 3. A graph signal, composed of two components (on the far right) is processed: i) with Tikhonov denoising 

as in Sec. 3.2 to increase its SNR; and ii) with graph empirical mode decomposition as from Sec. 4.3 [34] so as 

to separate its two components, which would not be directly separable either in the frequency domain (see the 

GFT on bottom left) or in the vertex domain. 

 

is the maximum eigenvalue of L (according to Gershgorin’s circle theorem, λmax is bounded by 2 maxi 

di ). Another possible normalisation is to use the normalized Laplacian Ln as it automatically sets the maximum 

frequency for every graph: λmax(Ln) = 2 [19]. Whatever the chosen normalisation, it provides a sort of 

“universal” design of filters and allows for easily reproducing classical forms of filters in signal processing. The 

idea of defining continuous filter has been first introduced for the design of graph wavelets [8]. It takes 

advantage of the particular line shape of the spectral domain, a convenient structure for scale changes; 

 

ii) set only the values at the specific eigenvalues λk of the studied graph. This approach is sometimes termed 

“frequency aware” design (e.g., [32]). In particular, this form is used in [12] and introduces the DSP 

framework on graphs. It has the advantage of being simple (the filter is a vector of size N) and it leverages 

linear algebra to design filters [33]. The main drawback of this method is that it is graph-dependent and 

does not allow us to transpose a filter from one graph structure to another. 

 

A complementary approach for designing filters takes its root in classical DSP, where the building 

block is the shift operator. An important class of filters is then obtained as polynomials, and more generally as 

rational fractions, of this shift operator. Then, the same polynomial coefficients serve to express the filter 

operator, its frequency response or the resulting filtered signal: 
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Here, h(λ) is defined for all λ, yet only the values at the λk ’s are relevant if a “frequency-aware” design is 

chosen. We do not elaborate on the construction for graph filters, but we refer the reader to [32], where finite-

response (polynomials) and infinite-response (rational fractions) graph filters have been studied. 

 

3.2. Denoising of graph signals 

One important purpose of filters is to perform signal denoising, that is to say, to remove (or to 

attenuate) part of the signal that is not deemed relevant for the analysis. Graph filters offer a way to do this. In 

order to fix ideas, let us consider the simple case where the signal is the sum of two terms s = f0 + n, where f 0 

corresponds to the useful information and n is the spurious noise. In general, one necessary condition to ensure 

rational denoising of this mixture is to be able to use some prior on the two components, to increase the signal-

to-noise ratio. For example, if we know that the relevant signal is smooth, namely that it is localised on some 

low-frequency domain, a correctly designed low-pass filter aims at reducing (if not zeroing) the high-frequency 

content related to the noise in the mixture, while preserving the informative low-pass component, as illustrated 

in Fig. 3 (i). A design to find an optimal balance between these two competitive actions is to go back to Eq. (6) 

that measures the smoothness of a graph signal, and we rewrite denoising as an inverse problem with Tikhonov 

regularisation [7]: 

 

f ∗ 

= 

arg min 

|| 

f 

− 

s 2 

+ 

γ ( f , L f ) (12) 

  f   ||2   

 

The parameter γ controls the trade-off between data fidelity (first term of the sum) and smoothness 

(second term of the sum). Using GFT leads to the solution to this compromise f
ˆ∗ (λk) = sˆ(λk )/(1 + γ λk ), and 

the corresponding low-pass graph filter with response function h(λk ) = 1/(1 + γ λk) readily follows. 

 

In fact, any classical filter function can be imported as a filter in GSP. More generally, the combination 

of filters with different shapes in filter banks has led to major progresses in the field for denoising or efficient 

decoding of the information in graph signals. It also paved the way to introduce powerful new representations of 

graph signals: wavelet and Gabor transformations that we will revisit under the light of GSP in Section 4. 

 

3.3. Convolution, localization, and translation 

The convolution operator is another important operation that is deeply rooted in harmonic analysis and 

signal processing. Defining its equivalent for graph signal processing is an intricate task as, in general, graphs 

are irregular structures for which shift invariance is meaningless.
5
 However, a classical property of the Fourier 

transform is that the convolution of two functions in the initial domain becomes a multiplication in the Fourier 

domain. Transposing this duality property straightforwardly to the GSP domain, the authors of [8,35] proposed 

the following definition. The convolution f ∗ g of two functions f and g defined on a graph is defined at each 

vertex i as: 

 

( f 
∗ 

g)(i) 
N−1

 f (λ )g(λ )u 

k 

(i) 

(13)   =ˆ k  
ˆ 

k  

k=0 

 

In other words, the convolution is defined as the operation that multiplies two functions in the spectral 

domain. It verifies the usual properties of standard convolution [35]: it is commutative and admits the Dirac δ 

function (defined as δ(0) = 1 and δ(i) = 0 for all i 0) as neutral element, i.e. δ ∗ f = f . 

More interestingly, this definition entails an important consequence of the convolution with respect to 

the localisation of graph signals when convoluted with localised kernels. Indeed, one can localise a graph signal 

f towards a specific node 
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v by convolving it with a distribution δv , which is 0 everywhere except at v. To see this, let us remark 

that δ
ˆ
v (λk) = uk(v) and apply the definition (13): 

 

( f 
∗ δv )(i) = 

N−1
 f (λ )u 

k 

(i)u 

k 

(v) 

(14)  ˆ k   

k=0 

It is shown in [8,35] that 

if ˆ 0 

) 

is significantly large 

at 

λ 
0 = 0 and if the function ̂  

can be accurately approximated by 

a 

 f (λ    f  

low-order polynomial on the spectral domain, then ( f ∗ δv ) is localised on the vertex domain, centred around 

vertex v and decays when moving away from it. 

 

Notice that formula (14) is not the unique way to define a translation on a graph. Although it is relevant 

for localisation, it suffers from other limitations and it is not so appropriate to consider it as a translation or a 

shift operator. Other approaches try to recover some group structure [36], or some explicit shift in the vertex 

domain [37]. Still, in many situations, the localisation property of the convolutions defined by Eq. (14) is 

sufficient. This is the case for wavelet and vertex-frequency transforms (see Sec. 4), as it would be for kernel 

methods on graphs (see also Sec. 5.2). 

 

3.4. Sampling 

The periodic sampling paradigm of the classical Shannon–Nyquist theorem for bandlimited signals 

does not apply to arbitrary graphs (besides, what does periodic sampling mean on an arbitrary graph?), so new 

sampling theorems have been designed to tackle the problem of sampling – and reconstructing – graph signals. 

First, one extends the notion of bandlim-itedness to graph signals: signals that are linear combinations of the 

first few low-frequency graph Fourier modes. Writing 

U k = (u1| . . . |uk) ∈ R
n×k

 , we have the formal definition: a graph signal z ∈ R
n
 is k-bandlimited if z ∈ 

Span(Uk ), i.e. ∃ α ∈ R
k
 

such that z = Uk α. 

By construction, these graph signals “vary slowly” along any paths of the graph. Moreover, this 

particular low-rank assumption enables generalized versions of the Nyquist–Shannon sampling theorems, which 

take into account the explicit structure of the underlying graph. 

In order to write down the important questions pertaining to this problem, let us introduce some 

notations. Sampling entails selecting a subset S = (s1, . . . , sm) of m nodes of the graph. With each possible 

sampling set we associate a mea- 

surement matrix M = (δs1 |δs2 | . . . |δsm )   ∈ R
m×n

  

where δsi ( j) = 1 if 

j = si , and 0 otherwise. Now, consider a k-

bandlimited 

signal z ∈ Span(Uk ). The measurement of z on S 

reads:  

y = M z + n ∈ R
m 

(15) 

 

where n models measurement noise. The sampling question boils down to: how should we sample S 

such that one can robustly recover any bandlimited z given its measurement y? There are three important 

components of this question: 

 

(i) how many samples m do we allow ourselves (m = k being the strict theoretical minimum)? (ii) how much 

does it cost to sample S? (iii) how do we in practice recover z from y and how much does that inversion cost? 

Depending on how one decides to answer the previous questions, a number of generalized sampling theorems 

adapted to graph signals have been proposed, e.g., [28,38–44]. We refer the interested reader to [45] for a recent 

review of the existing schemes. 

 

IV. ALTERNATE REPRESENTATIONS OF GRAPH SIGNALS 
As we have seen, the (graph) Fourier transform defines a dual representation space that in some cases, 

eases the defi-nition or the implementation of processing tasks on (graph) signals. Yet, the spectral domain 

holds its own limits and it is not necessarily the best space for representing the data. For instance, FT maps local 

features in the direct space to global characteristics delocalised over the entire spectral domain. Then, an 
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intermediate representation of signals is to mix the domains and to express data onto a basis (or a frame) 

indexed both by the time (or space for images) and the frequency. This domain has been particularly active for 

time signals in the past 40 years, with seminal works in time-frequency anal-ysis (e.g., [46,47]) and with the 

introduction of the wavelet transform [48,49] and all its variants. This exploration beyond Fourier has recently 

been extended to graph signals and we review now some of its most important results. 

 

4.1. Vertex-frequency decompositions 

Thanks to the localisation operator offered by the convolution in Sec. 3.3, and the frequency analysis 

explained in Sec. 2, one can develop vertex-frequency representations for graph signals, as in [35], where the 

authors develop the equivalence of a windowed Fourier analysis to signals on graphs. 

 

Given a window function g ∈ L 
2
(R)  (e.g., a Gaussian function, or any smooth and localised function), the 

(classical) 

windowed Fourier transform is the decomposition in: 

 

S f (t, ν) = f (u)g(u − t) e
−i2πνu

 du (16) 

 

R 

that is the decomposition on atoms g(u − t) e
i2πνu

 , modulated at frequency ν and translated (and so 

localised) around t. Because g is localised, the resulting decomposition extracts localised information near 

instant t at frequency ν. Now, using the generalized convolution operator of Eq. (13), this transform generalizes 

on graphs as: 

 

n 

 N−1  

f (n)uk(n) 

  

S f (i, λk) =  gˆ(λ )u (i)u (n) (17) 

∈ 

V 

 =0  

    

 

As shown in [35], this equation reduces to S f (i, λk) = ( f , gi,λk ) where the function gi,λk is the kernel g, which is 

frequency modulated at λk and localised by convolution around vertex i (thanks to Eq. (14)). 

 

4.2. Wavelets on graphs 

Wavelet transforms is a decomposition analogous to the previous one, except that the frequency 

modulation is replaced by a scaling of the atoms. Given the impact of Wavelet transform in data processing 

[49], it is not a surprise that the generalization of continuous wavelet transforms on graphs was one of the 

seminal works in graph signal processing [8]. 

In a nutshell, a classical wavelet transform is obtained by choosing atoms of a frame (or of a basis) as 

being band-pass functions (with zero-mean) that are localised at a specific instant by translation and shifted in 

frequency by scaling (instead of modulating as it would be in the windowed Fourier transform). Given the initial 

band-pass kernel ψ ∈ L 
2
(R), called the mother wavelet, one defines the wavelet transform of f at scale s ∈ R

+
 

and instant t as the scalar product with the scaled (by s) and translated (at t) wavelets as: 

 

     = s  ∗ s   = ˆ ∗  ˆ       
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 u − t 
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If ψ satisfies the admissibility condition 

that 

R  

2
/ν) dν cψ < 

, then the transform is invertible 

and the function ( ψ 
∗(ν)   

can be expressed by combining back the 

wavelet coefficients multiplied by the scaled and translated 

wavelets:  f (u)  

           

= 1/cψ 

 

+∞ 

 

W f (t, s)ψ(s,t) (u) dt ds/s. More details can be found in [48,49].  
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For functions indexed on graphs, the spectral form of Eq. (18) leads to a straightforward generalization using 

GFT and the localisation operator as initially discussed in [8]. For f a graph signal on V , one defines: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A graph wavelet at different scales. The wavelet spread decreases with the scale, as for a wavelet on a 

regular domain. 

 

W f (i, 

s) 

= 

N−1
 ψ (sλ ) f (λ )u (i)  

 ˆ k  ˆ k   k  (19) 

k=0 

 

the wavelet transform of f at vertex i and scale s > 0. Examples of graph wavelets are shown in Fig. 4. 

Having at hand such a transform opens the way to multiscale processing of graph signals, and many 

exploratory works flourished in the recent years. Many other multiscale transforms have been studied in the 

graph setting: filterbanks [9], Laplacian pyramids [50], Haar-like wavelets [51,52], wavelets via random forest 

[53], and this includes the original discrete wavelet transform built from the diffusion wavelets [54] before using 

the GFT analogy. We refer also to [29] for a review of various multiscale transforms on graphs. 

 

4.3. Extension: extraction of dictionaries or of modes on graphs 

A more general point of view is to adopt a data-driven approach to decompose a signal. Then, the 

atoms or the modes on which to represent a signal are not specified in advance. A general possibility is to 

estimate one (or several) dictionary(-ies) that are particularly well adapted at representing a collection of graph 

signals, while striving to meet certain particular constraint, such a sparsity, for instance. This is the line of 

thought followed in [55,56]. For compression, learning dictionaries outperform spectral wavelet transform, and 

this is true on graphs as it is for the usual setting. Both parametric (e.g., with a polynomial expansion in the 

Laplacian, as in Eq. (11)) and non-parametric filters (where the atoms are coded by their individual coefficients 

at each frequency λk ) have been considered and have interesting properties. 

An alternative representation is to try to decompose the signal as a sum of oscillating modes at separate 

local frequen-cies; this is one of the diverse roads to local frequency analysis [17]. For 1-d signals, this can be 

achieved in a data-driven manner using Empirical Mode Decomposition (EMD) [57]. For graph signals, we 

have developed EMD in [34]. The general idea of EMD, and of graph EMD, is to extract the fastest oscillation 

present in the signal (thanks to the so-called sifting process), and then iterate on the residual this same 

processing so as to achieve an exact additive decomposition. Once adapted to graphs [34], this procedure offers 

a data-driven approach to represent a graph signal, where the oscillations are not constrained by the graph 

Fourier modes. A visual example is shown in Fig. 3 (ii); here the graph signal is the sum of two components 

having overlapping GFTs, and the transform is still able to separate them. 

 

V. FOURIER AS A DATA SCIENTIST 
To end this article on the basics of GSP, our objective is to illustrate the ubiquitous legacy of Fourier’s 

work in Data Science through some applications of GSP, and the use of GSP as part of Machine Learning (ML) 

and Data Science. More originally, the connections between GSP and ML will be illustrated through the use of 

operators describing linear dynamics on graphs. This leads us back to Fourier because, an aspect of his original 

work was to find solutions for specific operators, the ones dealing with linear dynamics. 

 

5.1. Applications of graph signal processing 
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As titled in the recent overview [13], GSP has already found many applications. From the two foremost 

applications that are often considered, one is the generalization of image processing to irregular domains (e.g., 

missing samples, or on some mesh as in Fig. 1) [15,58]. An important case is the processing of 3-d point clouds 

because a proximity graph (k-nearest neighbours or -radious neighbourhood) is a natural space on which a 

signal of colour and/or depth can be considered. 

A second application is in network science at large, that is, when confronted to data where the relations 

between elements or data points is as important (or even more important) than the data values (or signal) on 

these points. Since the late 1990s, many sensor networks, communication networks, transportation networks, 

biological networks (e.g., functional connections in the brain or protein and/or gene interaction networks) and 

even social or economical networks were studied from the angle of their structure [4,5] and/or their dynamics 

[6]. The introduction of graph signal processing was a way to re-introduce the importance of signal on these 

networks, and of joint processing of the structure and the signal. For sensor networks, this has been useful for 

reconstructing sensor readings from compressed measurements [59], or anomaly detection in such networks 

[60]. An exciting domain of application is that of brain networks, where one seeks to use both the structure of 

the network (be it a structural network or one coming from functional connectivity) and the signals of activity of 

the brain (e.g., see Chapter 31 in [14]). As discussed in Part 4 of [14], adding the GSP point of view opens also 

new roads in social network analysis. 

Another aspect where networks and signal processing meet is when one considers joint time-vertex 

dynamics, as in [61]. There, the authors leverage GSP for time series on graphs, showing how to build a higher-

dimensional FT where the graph is one dimension and time the second dimension. As the time dimension can 

equivalently be considered as a path graph, this amounts to defining GFT and more generally GSP operations 

into a tensor product of graphs, so that the theories reviewed here are directly usable. 

 

5.2. Operators for data processing on graphs 

The spectral domain associated with GFT is the proper domain to deal with dynamics involving linear 

operators on graphs. This allows one to easily consider such operators for data processing on graphs. 

Let us consider diffusion on graphs. The way heat diffuses is the same everywhere on a regular 

domain. On an irregular domain like a graph, where vertices may be more connected in some places of the graph 

and less in other ones, the homogeneity is broken and, as a consequence, heat diffusion changes. A signature is 

that the graph Fourier modes are not anymore well spread and can be localised in particular places within the 

graph. On the one hand, it is disturbing as it disrupts our intuitive idea of a Fourier mode. On the other hand, it is 

interesting as it allows us to characterize the inhomogeneities in the graphs. Let us consider the heat kernel 

exp(−t L) or any similar low-pass filter defined in the graph spectral domain; applying it on a graph with the 

localization operator and measuring its spreading allows us to probe the inhomogeneity of the space [27]. It 

brings us back to the uncertainty principle presented in Sec. 2.3. The same spreading on the spectral domain 

leads to different spreading on the graph domain, depending on the local graph structure. The multiscale 

community detection of [62] works under the same intuition: information about the community a node is in 

“diffuses” naturally more easily in its community that in the next ones. 

A second example is to consider the behaviour of operators as a means to characterize graphs (while we were 

character-izing nodes in the first example). An idea for that can be found for instance in [63], where a distance 

between two graphs 

G 1 and G2 (resp. with Laplacians L1 and L2) is introduced as: 

D gd
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(G 
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It can be generalized by considering the multiple δv ’s as initial conditions of Eq. (5) [64] before combining 

them in a new measure of distance between graphs. A nice point is that the choice of the heat kernel generalizes 

well to other operators. The work in [65] does exactly that: in order to classify graphs, it considers not only the 

behaviour of the heat kernel exp(−t L) at all times t, which are, by nature, low pass in term of graph frequencies, 

but also the simple wave equation: 

∂ 
2
 f 

= −L f (plus initial conditions) (21) ∂t
2 

 

Keeping fully the operators solving these equations (e
−t L

 for diffusion, or e
−it L

 for waves) is too much, and [65] 

keeps only their trace on a large range of t; still, convincing results in graph classification are obtained, using 

efficient numerical approximations for large graphs. 

 

5.3. GSP and machine learning 
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In machine learning (ML) also, the legacy of Fourier is apparent. A classical goal of machine learning 

is to find structure and classes in data, based on how similar the data points are, and it is fairly classical to 

consider the points are the vertices of a graph and the edges are based on some thresholding of the similarities. 

Among graph-based methods in ML, the heat (or diffusion) kernel has long been recognised as a good approach 

to use kernel methods on graph data [66]. Spectral clustering [23] is also a method that emphasises the role of 

the graph coding of a data to cluster complex data. 

While GSP is foremost dealing jointly with graphs and signals, it has been shown that it is possible to 

specifically probe the structure of networks, coded as graphs, using concepts from GSP. For instance, spectral 

clustering can be shown to be using filters in the GFT domain [67] and, combining that with graph sampling 

techniques, efficient algorithms have been developed [44,68]. Multiscale representations offered by spectral 

graph wavelets lead to the development of new multiscale community detection for graphs without signals [62]. 

Semi-supervised learning also has found a GSP-based interpretation as [69] shows that it amounts to a form of 

Wiener filtering on graphs. 

Another fruitful combination of ML and GSP is for the task of graph inference, where one tries to 

estimate a graph from observed signals in the nodes [70]. Generally, it can be framed as an optimization 

problem for graph learning, and many works tackled this trying to learn the graph Laplacian in order for the data 

to be smooth on this graph [71], or for the graph to satisfy structural constraints [72]. A more physical 

interpretation of the same task is to infer the graph while observing signals diffused in time, i.e. signals that 

result from the application of a graph filter at each time step. This has been considered independently in [73,74] 

and these works give interesting results in that case. Still, they assume knowledge of the eigenfunctions of L and 

the work [75] revisits the question with a more physical insight. The authors show in [75], when a sparse prior 

for the data can be used, how to learn the graph while assuming that locally the observed signals result from a 

dynamics of heat diffusion, as in (5). Given the omnipresence of the diffusive process, even on graphs [6], this 

appears as a sound approach. 

The final example consists of convolution operators on graphs, as seen in Sec. 3.3. Current research on 

alternative formu-lations of convolution on graphs is today driven by attempts to generalize convolutional Deep 

Neural Networks (DNN), that obtain currently state-of-the-art results for data on regular domains, such as 

images [76], to data defined on graphs. For graph data, with objectives to classify either nodes or graphs, 

frameworks of DNN for graphs were evolved from GSP, and reviewed as “geometric deep learning” in [77], or 

smartly captured in a unified formalism in [78], while [79] draws a recent picture of current graph neural 

methods. The idea is to say that one layer of a neural network on graph consists of a non-linearity applied to the 

output of a graph spectral filter (as from Sec. 3.1) that can be implemented directly in the spectral domain (or be 

considered in the node domain for a better efficiency), and whose coefficients have to be learnt (usually by 

backpropagation). Then, pooling operations are obtained as local averages on the graph (e.g., [80]), or by graph 

coarsening (where it is possible to have some spectral guarantees, e.g., [81]). The current picture is that we have 

many architectures of deep neural networks on graphs, some rooted in GSP and Fourier transform on graphs, 

and the interpretation of GFT appears as a good way to explore what is a convolution on graphs, and so how to 

generalize DNN on irregular domains. 

 

VI. CONCLUSION 
This article has proposed an overview of graph signal processing, which is a recent and important 

addition in data science to deal with data on graphs. The emphasis has been on the generalization of the Fourier 

transform to data on graphs as a keystone to generalize data processing. Also, it has been a journey where we 

tried to show that the way Joseph Fourier produced science is acute, even so in modern time. Indeed, the 

modernity of Fourier is that his work combines physical intuition (or insight about what is studied), 

mathematical precision, and good computational (or algorithmic) properties [47]. For signals on graphs, we have 

tried to explain how the proposed GFT is sound for data, how it is mathematically accurate, and why it is useful 

for data processing. One last aspect is missing somehow, as we do not have yet algorithms as efficient as the 

Fast Fourier transform, despite progresses thanks to, e.g., iterative algorithms for polynomial approximations of 

functions of L [82], or to nice greedy approximation schemes of the Laplacian [83]. Improving on this aspect is 

a first challenge awaiting GSP, the second challenge being to come to fruitful applications for data on complex 

and irregular domains, graphs being such a case. Like the seminal article [7], the text is also an invitation to read 

further on the developments in signal processing on graphs. 
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